
Dataflow
Web-based flexible data reduction for neutron reflecometry

Brendan Rowan (SHIP, NCNR) – Poolesville High School
Mentor: Dr. Brian Maranville

Background and ImportanceBackground and Importance Caching Intermediate ResultsCaching Intermediate Results

Neutron reflectometry refers to the act of firing a beam of neutrons at a flat surface
while measuring the intensity of the reflected neutrons. The data collected when
using a neutron reflectometer gives the user valuable information about the
structure of any thin films on the surface being measured. However, it is difficult
to confidently state conclusions about the structure of these films with only raw
data, as they are recorded in instrument-specific coordinates. These data are
virtually useless unless they are converted into simplified, universal coordinates.
Converting instrument-specific data into a more usable form is commonly known
as data reduction, and is the main basis for the problem at hand.

The current alternative to performing data reduction by hand is to develop a new
program for each instrument. The user of such a program is able to perform
reduction techniques on data files, which are then ready for analysis. Although
these programs produce correct results, the user must learn a new interface for
every instrument he or she uses. In addition, it is difficult to change the
transformations that must be applied, which currently requires a change in user
interface, a shortcoming in the existing method.

The proposed program, Dataflow, allows the user to make unique reduction
recipes, regardless of which instrument is used. By only requiring the user to learn
one interface, Dataflow makes it easy for the user to learn new reduction routines
for many different types of instruments and experiments. In addition, because the
program resides in the user's web browser, a number of advantages are present such
as platform and browser independence, version unity, and ease of access.

Example OutputExample Output

Polarized Reduction TemplatePolarized Reduction Template
Offspecular Neutron ReflectometryOffspecular Neutron Reflectometry

The detector isn't calibrated perfectly, so the
sensitivity varies from pixel to pixel.
However, it is known that this sensitivity
can be approximated with a sinusoid and
can be corrected for.

Over time, the efficiencies of the polarizer and
analyzer diminish, which can be corrected for if the
time the measurements were taken is known.
Therefore, if the He3 Analyzer information and
timestamps are known, then the reduced efficiency of
the polarizer and analyzer can be corrected for once the
data is combined along each of the polarization states.

Above and to the right are the default templates for polarized and non-polarized offspecular neutron data. As
shown, these “templates” are flow diagrams that the user can create at will which link together “modules” that
perform a certain reduction. The user is allowed to drag and drop individual modules onto the editor and link
them together to perform reductions, although these default templates are provided. Then, the user specifies
which data files are needed for certain loaders. Finally, the user can click on a wire to view his or her data at
that point in the reduction.

Above is the default template for reducing polarized offspecular neutron data. After the conversions above,
the data can be treated like normal offspecular neutron data and be converted to Q-space. Certain reductions,
such as polarization correction, which uses complex linear algebra techniques, can take quite a long time due
to the calculations that must be performed. Therefore, these reductions really show how useful caching
intermediate results is. Without storing the results in a key-value datastore, the user would be unsatisfied with
the amount of time needed to view his or her data.

General Reduction TemplateGeneral Reduction Template
Offspecular Neutron ReflectometryOffspecular Neutron Reflectometry

As many data reductions take a large amount of time to compute, it makes sense to cache
intermediate results. Therefore, when a user clicks on a wire to view a plot of the data at
that point in the reduction, the program can short-circuit and retrieve the desired result if it
has already been calculated.

The program that was used to stash results was Redis, a key-value datastore that has
mechanisms for storing integers, strings, lists, and maps. Because it is not possible to store
references in memory, the operable datatype in the reduction chain must be converted to a
string, which is known as serialization. As Python, the programming language used for the
backend of Dataflow, has modules for serialization, these modules are only useful for built-
in datatypes such as lists and dictionaries. Because the Python serialization modules are
worthless in regards to most user-defined classes, methods were written that converted
Dataflow-specific datatypes to and from strings.

Besides serialization of objects, the program must be able to decide whether a certain
calculation has been performed or not. To make this decision, a fingerprint can be created for
a certain terminal of a certain node in the reduction diagram. However, certain factors have to
be accounted for which include:

● Fingerprints of ancestors
● All arguments passed to the module
● The output terminal and node number

With this information, a SHA-1 hash, which creates a 40 character string of hex digits, can be
created at each step in reduction for maximum efficiency.

On the right, you can see a very small
portion of raw data taken from the Advanced
Neutron Diffractometer/Refractometer
(AND/R) at NIST. Below is a screen shot
from Dataflow, which shows the plot of the
final step in most offspecular reduction
routines: converting to Q-space. The data on
the right, along with ten other data files was
used to produce the plot below.

Polarized offspecular neutron data is different
from regular offspecular neutron data in that a
certain file corresponds to a certain polarization
state: ++, +-, -+, or –, where the characters
represent the states of neutrons at the polarizer and
analyzer, respectively.

During experiments, it is not unusual for
something to get misaligned during data
collection. Therefore, an offset module is
designed for shifting datasets by a certain
value along a certain axis.

Pixels can be converted to 2θ using the
equation to the left. Because the angles are
very small, the small angle approximation
can be used to simplify the equation. The
conversion eventually boils down to 80
pixels per degree.

angle=arctan (
pixel width

sample distance
)

By looking at each of the datum's
dimensions, this module can construct an
empty grid that covers the whole span of
data supplied. Autogrid is implicitly called
by a Join module, so does not necessarily
need to be provided by the user.

After constructing a grid that covers the
whole span of data, each of the datasets can
be combined into one large dataset. Some
datasets might overlap, which needs to be
handled accordingly.

The final step in the default offspecular
reduction template is conversion to Q-space.
 Qx and Qz can be calculated when the
magnitude of the vector Q is known. The
optional terminal provides input for the
dimensions of the resulting Q-space plot.

Qx

QQz
tilt

sample

Q⃗= ⃗k out− k⃗ ın

Q⃗ x=∣Q⃗∣∗sin (tilt)

Q⃗ z=∣Q⃗∣∗cos(tilt)

	Slide 1

